Sains Malaysiana 53(2)(2024): 409-41

http://doi.org/10.17576/jsm-2024-5302-14

 

Carbon Dioxide Adsorption on Iron (III) Oxide Pillarized Na-Montmorillonite

(Penjerapan Karbon Dioksida pada Ferum (III) Oksida Terpilar Na-Montmorilonit)

 

MUHAMMAD NAUVAL FARRAS RUSSAMSI1, FIRMAN JOSHUA NAINGGOLAN1, TRIATI DEWI KENCANA WUNGU1,2,3,* & SUPRIJADI1,2,3

 

1Graduate Program of Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West Java, Indonesia

2Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West Java, Indonesia

3Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West Java, Indonesia

 

Diserahkan: 6 September 2023/Diterima: 19 Januari 2024

 

Abstract

Iron (III) oxide (Fe2O3) pillarized Na-montmorillonite (NaMMT) was prepared by ion-exchanging and calcining three different concentrations (0.025, 0.05, and 0.075 M) of Fe(OH)3 with NaMMT. The obtained materials were then examined for its ability to capture carbon dioxide, using thermogravimetric methods. The structural, compositional, and textural changes caused by pillarization were also examined using XRD, XRF, FTIR, and BET-BJH. The results showed that NaMMT-0.025 (pillared using 0.025 M of Fe(OH)3) and NaMMT-0.075 exhibit superior adsorption capacity compared to NaMMT, with NaMMT-0.025 having the greatest capacity. By contrast, NaMMT-0.05 registers a decrease in the amount of CO2 adsorbed, compared to NaMMT. Using XRF, it was shown that the amount of Fe2O3 present in the samples correspond to the concentration of Fe(OH)3 used in ion-exchange. XRD results shows that the interlayer space of NaMMT barely changed after addition of Fe2O3. Using FTIR, successful pillarization of Fe2O3 is confirmed, and by combining it with BET-BJH, it shows that addition of Fe2O3 could enhance carbon capture by creating favourable pore structures. Overall, it shows that adding an appropriate amount of Fe2O3 to montmorillonite will enhance CO2 adsorption.

 

Keywords: Adsorption; carbon dioxide; montmorillonite; pillarization

 

Abstrak

Ferum (III) oksida (Fe2O3) terpilar dalam Na-montmorilonit (NaMMT) telah disiapkan dengan cara menukar ion tiga kepekatan berbeza Fe(OH)3 (0.025, 0.05, dan 0.075 M) dengan NaMMT, kemudian memanggangnya. Bahan yang diperoleh kemudian diperiksa untuk keupayaannya menangkap karbon dioksida menggunakan kaedah termogravimetri. Perubahan struktur dan komposisi akibat pilari pun juga telah diperiksa menggunakan XRD, XRF, FTIR dan BET-BJH. Hasil kajian menunjukkan bahawa NaMMT-0.025 (dipilar menggunakan 0.025 M Fe(OH)3) dan NaMMT-0.075 menunjukkan kapasiti penyerapan yang lebih unggul berbanding dengan NaMMT, dengan NaMMT-0.025 menunjukkan kapasiti terbesar. Sebaliknya, NaMMT-0.05 menunjukkan penurunan jumlah CO2 yang diserap berbanding dengan NaMMT. Menggunakan XRF, didapati jumlah Fe2O3 dalam sampel sepadan dengan kepekatan Fe(OH)3 yang digunakan dalam pertukaran ion. Hasil XRD menunjukkan ruang antara lapisan pada NaMMT hanya berubah sedikit disebabkan oleh penambahan Fe2O3. Menggunakan FTIR, pemilaran Fe2O3 disahkan berjaya dan dengan menggabungkannya dengan hasil BET-BJH, didapati bahawa penambahan Fe2O3 dalam jumlah yang sesuai membina struktur liang yang menggalakkan penyerapan CO2. Secara keseluruhannya, ini menunjukkan bahawa penambahan jumlah Fe2O3 yang sesuai ke dalam montmorilonit akan meningkatkan penyerapan CO2.

Kata kunci: Karbon dioksida; montmorilonit; pemilaran; penyerapan

 

RUJUKAN

Banik, N., Jahan, S., Mostofa, S., Kabir, H., Sharmin, N. Rahman, M. & Ahmed, S. 2015. Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh J. Sci. Ind. Res. 50: 65-70.

Bineesh, K.V., Kim, D-K., Cho, H-J. & Park, D-W. 2010. Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S. Journal of Industrial and Engineering Chemistry 16(4): 593-597.

Bouazizi, N., Barrimo, D., Nousir, S., Ben Slama, R., Roy, R. & Azzouz, A. 2017. Montmorillonite-supported Pd0, Fe0, Cu0 and Ag0 nanoparticles: Properties and affinity towards CO2. Applied Surface Science 402: 314-322.

Busch, A., Bertier, P., Gensterblum, Y., Rother, G., Spiers, C.J., Zhang, M. & Wentinck, H.M. 2016. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-Energ. Geo-Resour. 2: 111-130.

Chauhan, T., Udayakumar, M., Ahmed Shehab, M., Kristály, F., Katalin Leskó, A., Ek, M., Wahlqvist, D., Tóth, P., Hernadi, K. & Németh, Z. 2022. Synthesis, characterization, and challenges faced during the preparation of zirconium pillared clays. Arabian Journal of Chemistry 15: 103706.

Chen, Y-H. & Lu, D-L. 2015. CO2 capture by kaolinite and its adsorption mechanicm. Applied Clay Science 104: 221-228.

Cottet, L., Almeida, C.A.P., Naidek, N., Viante, M.F., Lopes, M.C. & Debacher, N.A. 2014. Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science 95: 25-31.

Desai, H., Kannan, A. & Reddy, G.S.K. 2023. Sustainable and rapid pillared clay synthesis with applications in removal of anionic and cationic dyes. Microporous and Mesoporous Materials 352: 112488.

Dongmo, L.M., Jiokeng, S.L.Z., Pecheu, C.N., Walcarius, A. & Tonle, I.K. 2020. Amino-grafting of montmorillonite improved by acid activation and application to the electroanalysis of catechol. Applied Clay Science 191: 105602.

Eggleton, T. 2012. A Short Introduction to Climate Change. Cambridge: Cambridge University Press.

Feng, B., Wei, Y., Qiu, Y., Zuo, S. & Ye, N. 2018. Ce-modified AIZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene. Journal of Rare Earths 36: 1169-1174.

Gates-Rector, S. & Blanton, T. 2019. The powder diffraction file: A quality materials characterization database. Powder Diffr. 34(4): 352-360.

Hristodor, C-M., Vrinceanu, N., Pode, R., Copcia, V.E., Botezatu, E. & Popovici, E. 2013. Preparation and thermal stability of Al2O3-clay and Fe2O3-clay nanocomposites, with potential application as remediation of radioactive effluents. J. Therm. Anal. Calorim. 111: 1227-1234.

Kumararaja, P., Manjaiah, K.M., Datta, S.C. & Sarkar, B. 2017. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Applied Clay Science 137: 115-122.

Lee, S-Y. & Park, S-J. 2013. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of Colloid and Interface Science 389(1): 230-235.

Li, Q., Sun, X., Zhang, W., Sun, Z., Na, S., Chen, Z., Wang, L., Yuan, C. & Sun, H. 2022. Effect of Fe(III)-modified montmorillonite on arsenic oxidation and anthracene transformation in soil. Science of The Total Environment 814: 151939.

Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31: 1-10.

Marco-Brown, J.L., Barbosa-Lema, C.M., Torres Sánchez, R.M., Mercader, R.C. & Dos Santos Afonso, M. 2012. Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Applied Clay Science 58: 25-33.

Patel, H.A., Somani, R.S., Bajaj, H.C. & Jasra, R.V. 2006. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci. 29: 133-145.

Poppe, L.J., Paskevich, V.F., Hathaway, J.C. & Blackwood, D.S. 2001. A Laboratory Manual for X-Ray Powder Diffraction. https://doi.org/10.3133/ofr0141

Quiroz-Estrada, K., Hernández-Espinosa, M.A., Rojas, F., Portillo, R., Rubio, E., López, L. 2016. N2 and CO2 adsorption by soils with high kaolinite content from San Juan Amecac, Puebla, México. Minerals 6(3): 73.

Raganati, F., Miccio, F. & Ammendola, P. 2021. Adsorption of carbon dioxide for post-combustion capture: A review. Energy Fuels 35(16): 12845-12868.

Rubin, E., Abanades, J.C., Akai, M., Benson, S., Keith, D., Mazzotti, M., Metz, B., Osman-Elasha, B., Palmer, A., Smekens, K. & Soltanieh, M. 2005. IPCC Special Report : Carbon Dioxide Capture and Storage, 1st ed. Cambridge: Cambridge University Press.

Ruiz-Torres, C.A., Araujo-Martínez, R.F., Martínez-Castañón, G.A., Morales-Sánchez, J.E., Guajardo-Pacheco, J.M., González-Hernández, J., Lee, T-J., Shin, H-S., Hwang, Y. & Ruiz, F. 2018. Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chemical Engineering Journal 336: 112-122.

Salerno, P. & Mendioroz, S. 2002. Preparation of A1-pillared montmorillonite from concentrated dispersions. Applied Clay Science 22(3): 115-123.

Sobhanardakani, S., Jafari, A., Zandipak, R. & Meidanchi, A. 2018. Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent Process Safety and Environmental Protection 120: 348-357.

Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051-1069.

Tomul, F. 2012. Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites. Journal of Nanomaterials 2012: 237853.

Wang, X., Cheng, H., Chai, P., Bian, J., Wang, X., Liu, Y., Yin, X., Pan, S. & Pan, Z. 2020. Pore characterization of different clay minerals and its impact on methane adsorption capacity. Energy Fuels 34(10): 12204-12214.

Wu, K., Ye, Q., Wu, R., Chen, S. & Dai, H. 2020. Carbon dioxide adsorption behaviours of aluminum-pillared montmorillonite-supported alkaline earth metals. Journal of Environmental Sciences 98: 109-117.

 

*Pengarang untuk surat-menyurat; email: triati@itb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya